[Napier's Constant e]

Substitute the natural numbers $1,2,3,\cdots$ into n of $(1 + 1/n)^n$ in sequence, and observe how the approximate value of the natural logarithm e is obtained.

6:29	a 🗟 🖸		হ্লি 🛧 85% 💼
Napie	r`s Const	ant	
	[Napier	r`s Cons	tant]
(th	e base of r	natural log	arithm e)
n = -	401		
Appr	oximaion	of Napie	r`s constant
	=lim n→∞	(1+1/	'n) ⁿ
	= 2.7149	0017917	83505
Napie	er`s const	ant	
	= 2.7182	8182845	90452
Touch Touch If you	the screen t the screen a touch it furth	o activate. again to stop ner,it will be i	o the auto. initialized.
When	the screen g	oes dark,tou	ich the title bar !
	Copyright((C) Sohun 20:	21.9.1
	311	-	

[Screenshot] Galaxy S9

[Emulator image] Android Studio Version 3.5.1

[Outline]

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n} \qquad (Let \ n \ be \ a \ natural \ number)$$

The limit value of the above equation is called the "base of natural logarithm" or "Euler number" and is represented by e.

Let's observe the situation when n is increased steadily.